- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
K, Sehgal (1)
-
O, Costin (1)
-
O. Costin, G.V. Dunne (1)
-
RD, Costin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Submitted paper. arxiv abstract: The Hénon-Heiles system, initially introduced as a simplified model of galactic dynamics, has become a paradigmatic example in the study of nonlinear systems. Despite its simplicity, it exhibits remarkably rich dynamical behavior, including the interplay between regular and chaotic orbital dynamics, resonances, and stochastic regions in phase space, which have inspired extensive research in nonlinear dynamics. In this work, we investigate the system's solutions at small energy levels, deriving asymptotic constants of motion that remain valid over remarkably long timescales -- far exceeding the range of validity of conventional perturbation techniques. Our approach leverages the system's inherent two-scale dynamics, employing a novel analytical framework to uncover these long-lived invariants. The derived formulas exhibit excellent agreement with numerical simulations, providing a deeper understanding of the system's long-term behavior.more » « lessFree, publicly-accessible full text available November 25, 2025
-
O. Costin, G.V. Dunne (, Journal of physics A Mathematical and theoretical)
An official website of the United States government
